5,506 research outputs found

    Electron and Phonon Thermal Waves in Semiconductors: an Application to Photothermal Effects

    Full text link
    The electron and phonon temperature distribution function are calculated in semiconductors. We solved the coupled one-dimensional heat-diffussion equations in the linear approximation in which the physical parameters on the sample are independent of the temperature. We also consider the heat flux at the surface of the semiconductor as a boundary condition for each electron and phonon systems instead of using a fixed temperature. From this, we obtain an expression for electron and phonon temperature respectively. The characterization of the thermal waves properties is duscussed and some practical procedures for this purpose provide us information about the electron and phonon thermal parameters.Comment: 12 pages, amstex and amssymb macro package (LaTeX2e edition

    Towards an understanding of nucleon spin structure: from hard to soft scales

    Get PDF
    The workshop "The Helicity Structure of the Nucleon" (BNL June 5, 2006) was organized as part of the 2006 RHIC & AGS Users' Meeting to review the status of the spin problem and future directions. The presentations can be found at http://www.phenix.bnl.gov/WWW/publish/caidala/UsersHelicityWorkshop2006/ . Recent data suggests small polarized glue and strangeness in the proton. Here we present a personal summary of the main results and presentations. What is new and exciting in the data, and what might this tell us about the structure of the proton ?Comment: 20 pages, to appear in Int. J. Mod. Phys.

    Slow imbalance relaxation and thermoelectric transport in graphene

    Full text link
    We compute the electronic component of the thermal conductivity (TC) and the thermoelectric power (TEP) of monolayer graphene, within the hydrodynamic regime, taking into account the slow rate of carrier population imbalance relaxation. Interband electron-hole generation and recombination processes are inefficient due to the non-decaying nature of the relativistic energy spectrum. As a result, a population imbalance of the conduction and valence bands is generically induced upon the application of a thermal gradient. We show that the thermoelectric response of a graphene monolayer depends upon the ratio of the sample length to an intrinsic length scale l_Q, set by the imbalance relaxation rate. At the same time, we incorporate the crucial influence of the metallic contacts required for the thermopower measurement (under open circuit boundary conditions), since carrier exchange with the contacts also relaxes the imbalance. These effects are especially pronounced for clean graphene, where the thermoelectric transport is limited exclusively by intercarrier collisions. For specimens shorter than l_Q, the population imbalance extends throughout the sample; the TC and TEP asymptote toward their zero imbalance relaxation limits. In the opposite limit of a graphene slab longer than l_Q, at non-zero doping the TC and TEP approach intrinsic values characteristic of the infinite imbalance relaxation limit. Samples of intermediate (long) length in the doped (undoped) case are predicted to exhibit an inhomogeneous temperature profile, whilst the TC and TEP grow linearly with the system size. In all cases except for the shortest devices, we develop a picture of bulk electron and hole number currents that flow between thermally conductive leads, where steady-state recombination and generation processes relax the accumulating imbalance.Comment: 14 pages, 4 figure

    Splittings of generalized Baumslag-Solitar groups

    Full text link
    We study the structure of generalized Baumslag-Solitar groups from the point of view of their (usually non-unique) splittings as fundamental groups of graphs of infinite cyclic groups. We find and characterize certain decompositions of smallest complexity (`fully reduced' decompositions) and give a simplified proof of the existence of deformations. We also prove a finiteness theorem and solve the isomorphism problem for generalized Baumslag-Solitar groups with no non-trivial integral moduli.Comment: 20 pages; hyperlinked latex. Version 2: minor change

    Beat-wave generation of plasmons in semiconductor plasmas

    Full text link
    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas.Comment: 11 pages, LaTex, no figures, no macro

    Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland

    Get PDF
    Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and pathways, and novel putative cancer genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0700-7) contains supplementary material, which is available to authorized users

    Discrimination between two mechanisms of surface-scattering in a single-mode waveguide

    Full text link
    Transport properties of a single-mode waveguide with rough boundary are studied by discrimination between two mechanisms of surface scattering, the amplitude and square-gradient ones. Although these mechanisms are generically mixed, we show that for some profiles they can separately operate within non-overlapping intervals of wave numbers of scattering waves. This effect may be important in realistic situations due to inevitable long-range correlations in scattering profiles.Comment: 5 pages, 3 figure

    Quantum and Boltzmann transport in the quasi-one-dimensional wire with rough edges

    Full text link
    We study quantum transport in Q1D wires made of a 2D conductor of width W and length L>>W. Our aim is to compare an impurity-free wire with rough edges with a smooth wire with impurity disorder. We calculate the electron transmission through the wires by the scattering-matrix method, and we find the Landauer conductance for a large ensemble of disordered wires. We study the impurity-free wire whose edges have a roughness correlation length comparable with the Fermi wave length. The mean resistance and inverse mean conductance 1/ are evaluated in dependence on L. For L -> 0 we observe the quasi-ballistic dependence 1/ = = 1/N_c + \rho_{qb} L/W, where 1/N_c is the fundamental contact resistance and \rho_{qb} is the quasi-ballistic resistivity. As L increases, we observe crossover to the diffusive dependence 1/ = = 1/N^{eff}_c + \rho_{dif} L/W, where \rho_{dif} is the resistivity and 1/N^{eff}_c is the effective contact resistance corresponding to the N^{eff}_c open channels. We find the universal results \rho_{qb}/\rho_{dif} = 0.6N_c and N^{eff}_c = 6 for N_c >> 1. As L exceeds the localization length \xi, the resistance shows onset of localization while the conductance shows the diffusive dependence 1/ = 1/N^{eff}_c + \rho_{dif} L/W up to L = 2\xi and the localization for L > 2\xi only. On the contrary, for the impurity disorder we find a standard diffusive behavior, namely 1/ = = 1/N_c + \rho_{dif} L/W for L < \xi. We also derive the wire conductivity from the semiclassical Boltzmann equation, and we compare the semiclassical electron mean-free path with the mean free path obtained from the quantum resistivity \rho_{dif}. They coincide for the impurity disorder, however, for the edge roughness they strongly differ, i.e., the diffusive transport is not semiclassical. It becomes semiclassical for the edge roughness with large correlation length

    Metal-insulator transition in a two-dimensional electron system: the orbital effect of in-plane magnetic field

    Full text link
    The conductance of an open quench-disordered two-dimensional (2D) electron system subject to an in-plane magnetic field is calculated within the framework of conventional Fermi liquid theory applied to actually a three-dimensional system of spinless electrons confined to a highly anisotropic (planar) near-surface potential well. Using the calculation method suggested in this paper, the magnetic field piercing a finite range of infinitely long system of carriers is treated as introducing the additional highly non-local scatterer which separates the circuit thus modelled into three parts -- the system as such and two perfect leads. The transverse quantization spectrum of the inner part of the electron waveguide thus constructed can be effectively tuned by means of the magnetic field, even though the least transverse dimension of the waveguide is small compared to the magnetic length. The initially finite (metallic) value of the conductance, which is attributed to the existence of extended modes of the transverse quantization, decreases rapidly as the magnetic field grows. This decrease is due to the mode number reduction effect produced by the magnetic field. The closing of the last current-carrying mode, which is slightly sensitive to the disorder level, is suggested as the origin of the magnetic-field-driven metal-to-insulator transition widely observed in 2D systems.Comment: 19 pages, 7 eps figures, the extension of cond-mat/040613

    Manifestation of the Roughness-Square-Gradient Scattering in Surface-Corrugated Waveguides

    Full text link
    We study a new mechanism of wave/electron scattering in multi-mode surface-corrugated waveguides/wires. This mechanism is due to specific square-gradient terms in an effective Hamiltonian describing the surface scattering, that were neglected in all previous studies. With a careful analysis of the role of roughness slopes in a surface profile, we show that these terms strongly contribute to the expression for the inverse attenuation length (mean free path), provided the correlation length of corrugations is relatively small. The analytical results are illustrated by numerical data.Comment: 13 pages, 3 figure
    • …
    corecore